Use of laparoscopic hepatectomy by recognizing disadvantages and difficulty level of operative procedure

Yoshikuni Kawaguchi

Hepato-Pancreatico-Biliary Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan

Correspondence to: Yoshikuni Kawaguchi, MD, PhD. Hepato-Pancreatico-Biliary Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. Email: yokawaguchi-ty@umin.ac.jp.

Provenance: This is an invited article commissioned by the Editor-in-Chief Giovanni Battista Levi Sandri (Division of General Surgery, Santa Scolatica Hospital, Cassino, Lazio, Italy).

Received: 27 August 2018; Accepted: 31 August 2018; Published: 11 September 2018.

doi: 10.21037/ls.2018.09.01

View this article at: http://dx.doi.org/10.21037/ls.2018.09.01

In a recent issue of International Journal of Surgery, Deng et al. published the results of laparoscopic hepatectomy (LH) compared with open hepatectomy (OH) for patients with hepatocellular carcinoma (1). The authors analyzed 157 patients undergoing LH and 157 patients undergoing OH using propensity score matching. The operation time was significantly shorter and the amount of estimated blood loss was significantly less in the LH group than in the OH group. The LH group was associated with a smaller rate of postoperative morbidity than the OH group. However, it should be noted that the type of resection was different between the groups. The proportions of right hepatectomy, extended left hepatectomy, and right anterior sectionectomy were higher in the OH group than in the LH group. In contrast, left lateral sectionectomy and left hepatectomy were more frequently performed in the LH group than in the OH group. This difference between the two groups may have influenced the surgical and postoperative outcomes. Long-term outcomes were assessed on the basis of long median follow-up period, demonstrating the comparative overall and disease-free survivals between the groups.

Adhering to the authors’ findings, it is important to use the laparoscopic approach depending on the difficulty of the operative procedure and the technical expertise of surgeons/teams. We have recently reported a new classification of LH on the basis of the operation time, amount of blood loss, and conversion rate (2). This classification stratifies the difficulty of 11 different LH procedures into the following three grades: grade I (low level), grade II (intermediate level), and grade III (high level) (Table 1). The operation time, amount of blood loss, and conversion rate of grades I, II, and III in terms of median [range] were as follows: operation time, 135 [25–480] vs. 200 [40–420] vs. 250 [90–600] min, P<0.001; blood loss, 10 [0–1,000] vs. 100 [0–1,500] vs. 250 [0–4,500] mL, P<0.001; and conversion rate, 0.5% vs. 2.7% vs. 8.6%, P<0.001. In this three-level classification, grade I procedures should not be regarded as being “easy”, but are less complicated than the other LHs because the surgical outcomes were found to be better than those observed in grade II and III procedures. Thus, grade I procedures can be suitable for liver surgeons at the beginning level of LH. This classification is expected to serve as a guide to determine whether the laparoscopic approach can be used depending on the surgeons’ technical expertise. Although the classification was based on intraoperative outcomes, the results of the classification showed that morbidity rates were associated with a significant stepwise increase in grades from I to III: morbidity rate, 8.4% vs. 17.3% vs. 45.7%, P<0.001, and major complication rate (the Clavien-Dindo classification grade ≥III), 1.1% vs. 4.0% vs. 20.4%, P<0.001. The major complication and mortality rates were as low as 0% for grade I and II procedures, implying that grade I/II LHs are least likely to be associated with severe postoperative complications and are less complicated operations than grade III LHs. Grade III procedures should be performed.
only by experts because of high major complication rates. This classification can be useful for indicating the appropriate LH depending on surgeons’ expertise and ensuring the safety of patients undergoing LH.

The advantages of using the laparoscopic approach include a magnified view (3,4) and hemostatic effect caused by pneumoperitoneum (5). The authors showed that LH group was associated with lower amount of estimated blood loss than the OH group. Conversely, the disadvantages of LH are the lacks of a complete hepatic view and tactile feedback, which may mislead surgeons toward near misses or fatal intraoperative complications (6). The lack of a complete hepatic view may hinder surgeons from noticing bleeding that occurs outside the surgical field and identifying the right or left hepatic vessels. The lack of tactile feedback may hinder surgeons from identifying tumors and securing the surgical margin because surgeons generally use their hands and fingers to feel tumor elasticity and to hold the liver during OH. Such manual palpation and tactile feedback are helpful in identifying tumors that are not exposed on the liver surface and in tailoring the transection line. To compensate for these disadvantages, previous reports have demonstrated the usefulness of new intraoperative modalities, including contrast-enhanced ultrasonography (7), real-time tissue elastography (8,9), and fluorescence imaging (10-14). Contrast-enhanced ultrasonography and real-time tissue elastography enhances visualization of iso-echoic lesions in B-mode images (7,8). Fluorescence imaging using indocyanine green as a fluorophore has been employed in hepatobiliary surgeries (15-18). As intraoperative laparoscopic ultrasonography is inflexible compared with open devices, indocyanine green-fluorescence imaging is helpful in visualizing liver lesions as fluorescence on the liver surface (10,12). Fluorescence imaging also helps in visualizing the bifurcation of the bile ducts, differentiating the portal vein from the bile duct, and identifying the tiny bile duct during hepatic parenchymal transection (11).

Finally, the type of LH procedure to be used should not be decided merely on the basis of technical simplicity. LH has been increasingly used in clinical practice, and surgeons may select technically simpler left lateral sectionectomy instead of parenchyma-sparing liver resection including anatomic resection of segment II or segment III. In fact, the first and second International Consensus Conferences on Laparoscopic Liver Resection recommended that laparoscopic left lateral sectionectomy is associated with lower level of complexity and should be considered as a standard procedure (19,20). Similar to the results of authors’ study, the survey results from the Consensus Conference showed that the rate of laparoscopic approach was higher for left lateral sectionectomy than for other liver resection procedures (21). Compared with left lateral sectionectomy, anatomic resection of segment II/III was reportedly associated with better postoperative liver volume recovery than was left lateral sectionectomy (22). The long-term outcomes after anatomic resection of segment II/III were comparable to those after left lateral sectionectomy. As such, the parenchyma-sparing strategy can be useful for resection of hepatocellular carcinoma located at left lateral section and can facilitate repeated liver resection (23).

In conclusion, we congratulate Deng et al. for comparing the outcomes of LH and OH using propensity score matching and showing better short-term outcomes and

<table>
<thead>
<tr>
<th>Grade</th>
<th>Three difficulty levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>Low level</td>
</tr>
<tr>
<td></td>
<td>- Wedge resection (AL segment)</td>
</tr>
<tr>
<td></td>
<td>- Wedge resection (PS segment)</td>
</tr>
<tr>
<td></td>
<td>- Left lateral sectionectomy</td>
</tr>
<tr>
<td>Grade II</td>
<td>Intermediate level</td>
</tr>
<tr>
<td></td>
<td>- Segmentectomy (AL segment)</td>
</tr>
<tr>
<td></td>
<td>- Left hepatectomy</td>
</tr>
<tr>
<td>Grade III</td>
<td>High level</td>
</tr>
<tr>
<td></td>
<td>- Segmentectomy (PS segment)</td>
</tr>
<tr>
<td></td>
<td>- Right hepatectomy</td>
</tr>
<tr>
<td></td>
<td>- Extended right hepatectomy</td>
</tr>
<tr>
<td></td>
<td>- Right posterior sectionectomy</td>
</tr>
<tr>
<td></td>
<td>- Central hepatectomy</td>
</tr>
<tr>
<td></td>
<td>- Extended left hepatectomy</td>
</tr>
</tbody>
</table>

Left hepatectomy (resection of segments 2, 3, and 41); right posterior sectionectomy (resection of segments 2, 3, and 41); right hepatectomy (resection of segments 5, 6, 7, and 81); extended right hepatectomy (resection of segments 4, 5, 6, 7, and 81); central hepatectomy (resection of segments 5 and 8, or segments 4, 5, and 8); extended left hepatectomy (resection of segments 1, 2, 3, 4, 5, and 8). ‡, Couinaud’s segments 2, 3, 4b, 5, and 6; §, Couinaud’s segments 1, 4a, 7, and 8. AL, anterolateral; PS, posterosuperior.
comparable long-term outcomes in carefully selected
patients. LH is increasingly used in clinical practice
because of its advantages: magnified view and hemostatic
effect caused by pneumoperitoneum (20). However,
we must consider the disadvantages of LH, lack of a
complete hepatic view and tactile feedback, and then use
a laparoscopic approach considering the difficulty of the
LH procedure and the surgeons' technical expertise. As
the authors’ mentioned in their study, the laparoscopic
approach should be carefully selected to ensure the safety of
patients undergoing LH.

Acknowledgements
None.

Footnote
Conflicts of Interest: The author has no conflicts of interest to
declare.

References
hepatectomy versus open hepatectomy for hepatocellular
carcinoma in 157 patients: A case controlled study with
propensity score matching at two Chinese centres. Int J
Laparoscopic Liver Resection: Proposal for a New
radical prostatectomy. The Creteil experience. Eur Urol
laparoscopic surgery on bladder and sexual function after
total mesorectal excision for rectal cancer. Surg Endosc
5. Eiriksson K, Fors D, Rubertsson S, et al. High intra-
abdominal pressure during experimental laparoscopic liver
resection reduces bleeding but increases the risk of gas
techniques to avoid near misses during laparoscopic
7. Kawaguchi Y, Tanaka N, Kokudo N. Surgical value
of contrast-enhanced ultrasonography in laparoscopic
hepatectomy using energy devices. J Hepatobiliary
of Intraoperative Real-Time Tissue Elastography
During Laparoscopic Hepatectomy. J Am Coll Surg
2015;221:e103-11.
real-time tissue elastography during laparoscopic
subcapsular hepatic malignancy by indocyanine-green
fluorescence imaging during laparoscopic hepatectomy.
of Indocyanine Green-Fluorescence Imaging for
Visualization of the Bile Duct During Laparoscopic Liver
of indocyanine green-fluorescence imaging during
laparoscopic hepatectomy to visualize subcapsular hard-to-
detection and resection of occult liver tumors of multiple
cancer types using real-time near-infrared fluorescence
the surgical margin in laparoscopic liver resections using
infrared indocyanine green fluorescence. Langenbecks
Arch Surg 2018. [Epub ahead of print].
assessment of reconstructed vessels in living-donor liver
transplantation, using a novel fluorescence imaging
of intraoperative fluorescence imaging to evaluate local
anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat
guided surgery of hepatocellular carcinoma by indocyanine
green fluorescence imaging navigation. J Surg Oncol
2009;100;75-9.
cholangiography illuminating the biliary tree during
2009;250:825-30.
Recommendations for laparoscopic liver resection: a report

doi: 10.21037/ls.2018.09.01

Cite this article as: Kawaguchi Y. Use of laparoscopic hepatectomy by recognizing disadvantages and difficulty level of operative procedure. Laparosc Surg 2018;2:42.